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The var ia t iona l  p rob l em  of s t a t ionary  t h e r m a l  conductivity in an inhomogeneous solid is  
formula ted .  It is  a s s u m e d  that the boundary conditions on the boundary of the body a re  un- 
known. In o rde r  to obtain a unique and s table  solution one r equ i r e s  m e a s u r e m e n t  of the 
t e m p e r a t u r e  at  one point and c o r r e c t  se lect ion of the regu la r iza t ion  p a r a m e t e r .  

As is  well  known, an indi rec t  m e a s u r e m e n t  is  defined as  a m e a s u r e m e n t  in which the value of the 
des i r ed  quantity is  de te rmined  by calculat ion on the bas i s  of d i r ec t  m e a s u r e m e n t s  of other  quanti t ies which 
a r e  a s soc ia t ed  with the m e a s u r e d  quantity by a known dependence.  Under these conditions the p rocedure  
fo r  calculat ing the des i r ed  quantity may  be fa i r ly  compl ica ted .  

If the re la t ionship  between the des i red  and m e a s u r e d  quanti t ies  is known with an accuracy  of up to a 
ce r ta in  functional equation ref lect ing,  for  example ,  the condition of conserva t ion  of energy,  momentum 
or  m a s s ,  the superposi t ion  pr inciple  or  other  phys ica l  laws, then the notion of indi rec t  m e a s u r e m e n t  ac -  
qu i res  a meaning  that is  dif ferent  f r o m  one usual ly  accepted  in met ro logy .  

In engineer ing  the necess i ty  f requent ly  a r i s e s  of m e a s u r i n g  a ce r ta in  physica l  p a r a m e t e r  where  one 
cannot, for  example ,  p lace  a m e t e r  in view of s t ruc tu ra l ,  technological ,  or  opera t ional  pecu l ia r i t i es  ( i .e . ,  
f ac to r s  based  on an especia l ly  p r ac t i ca l  p roPer ty) .  

Le t  it be requ i red  to m e a s u r e  the t e m p e r a t u r e  on the su r face  of a body or to de te rmine  the heat flux 
through i ts  boundary for  heat ing by  an ex te rna l  source .  Fo r  var ious  r ea sons  the poss ibi l i ty  of placing the 
sensing e l emen t s  of a t r ansduce r  on the sur face  of the body or  of p e r f o r m i n g  m e a s u r e m e n t s  by the contac t -  
l e s s  method is excluded. 

If the t e m p e r a t u r e  depends on one coordinate ,  then for  the s imples t  body (half-space,  plate,  cyl in-  
der ,  sphere)  the p rob lem indicated is solved as  an inve r se  p rob lem or  as a p rob lem in recons t ruc t ion  
(analytical  continuation}, depending on the number  of points inside the body at  which m e a s u r e m e n t  is p e r -  
f o rmed  [1, 2, 3]. In o ther  words ,  finding the t e m p e r a t u r e  at some point of the body f rom a m e a s u r e m e n t  
at  a different  point of the body is essen t ia l ly  an indi rec t  m e a s u r e m e n t ,  but not in the sense  of the definition 
genera l ly  accepted  in met ro logy .  

As will be evident f r o m  the subsequent  expanded s ta tement  of the p rob lem,  in t e r m s  of the m a t h e -  
ma t i ca l  p rocedu re  this type of m e a s u r e m e n t  is c lose  to the opera t ional  t r ea tmen t  of indi rec t  m e a s u r e m e n t  
in quantum mechan ics .  

However ,  the ma thema t i ca l  opera t ion of r econs t rue t ing  values of a function or the function i t se l f  
f r o m  one or  s e v e r a l  m e a s u r e m e n t s  may  be incor rec t ,  since one of the three conditions for  a c o r r e c t l y  
s ta ted p rob l em is not a lways fulfilled, notwithstanding the exis tence of phys ica l  uniqueness of the situation. 

Regular iza t ion  methods p roposed  by  Tikhonov, Morozov,  Turchin,  and a s soc i a t e s  [4], and by a 
s e r i e s  of many  mathemat ic i ans  e l iminate  the i n c o r r e c t n e s s  of the or iginal  p rob lem in var ious  ways.  
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Let  us  go over  to formula t ion  of the following impor tan t  p rac t i ca l  p rob lem.  

In a continuous body but  one which is inhomogeneous in i ts  the rmophys ica l  proper t ies1 '  it is r equ i red  
to de te rmine  the t e m p e r a t u r e  at  some points X* = (x*, y*, z*) where  d i rec t  m e a s u r e m e n t  is  imposs ib le ,  
but the t e m p e r a t u r e  at one or  s eve ra l  o ther  points X 0, X 1 . . . . .  may  be moni tored .  

Le t  us  cons ider  the case  of s ta t ionary  t h e r m a l  conductivity.  

Le t  a body cons is t  of a union of domains D1, D 2 . . . . .  Dn : D = C D i which a re  homogeneous in their  
i = l  

p r o p e r t i e s  and have different  the rmophys ica l  p r o p e r t i e s .  Domains  containing liquids or  gas or  evacuated 
cavi t ies  may  l ikewise se rve  as D i. Under these conditions it is  a s sumed  that there  is  no convect ive motion 
in a gas or  liquid. 

Inside the domains  D i the p r e s ence  of energy  sources  or  sinks is not excluded by definition. 

Heat  exchange with the ambient  medium may go on accord ing  to var ious  laws on the outside sur face  
of the body. However ,  these laws a r e  a s s umed  to be unknown. In this case  it is  requi red  to de te rmine  
the t e m p e r a t u r e  at the point X*, as well  as  the  boundary conditions,  f r o m  one m e a s u r e m e n t  at the point 
X 0 (or at  s eve ra l  points) .  The point X 0 may lie on the boundary of the body; the function of a point may 
be p e r f o r m e d  by a ce r ta in  sur face  or  volume whose t e m p e r a t u r e  is moni tored .  

In the body cons idered ,  which fi l ls  a t h ree -d imens iona l  domain D having a boundary ~2, we introduce 
a Ca r t e s i an  coordinate  s y s t e m  with rec tangula r ,  spher ica l ,  or  cyl indr ica l  s y m m e t r y ;  this will be d e t e r -  
mined by the delineation or  p r o p e r t i e s  of the boundary ~ that c loses  the union of domains D1, D 2 . . . . .  D n. 

Let  us  wri te  the O n s a g e r - G l a n s d o r f f - P r i g o g i n e  m a x i m u m  pr inc ip le  [5, 6, 7] for  the production of 
ent ropy in the s ta t ionary  s tate  of a body on the assumpt ion  that the boundary conditions a re  fixed in space  
and t ime.  Based  on the addi t iveness  p rope r ty  of entropy,  ent ropy production,  and entropy flux as  quan- 
t i t ies  of an extensive c h a r a c t e r ,  the m a x i m u m  pr inc ip le  for  the p rob lem s ta ted will have the f o r m  

J= -- ~ [ ~ ( v T ) '  " T'w] dv-~�9 ~f ~'D~(F))T" c)T~ On (1) 

v=U n~ n= U o,,r, 
i=l  l ~ l  

where T(X) is  the t e m p e r a t u r e  a t  an a r b i t r a r y  point of the body; w(X) is the power  of in terna l  heat  sources  
or  s inks.  

The second t e r m  in the functional (1) is  the s t eady- s t a t e  entropy flux through the boundary i2. 

Since the ope ra to r  which s t ipula tes  the dis t r ibut ion of the t e m p e r a t u r e  field in a homogeneous body 
having the boundary t2 is known, i ts  eigenfunctions ,I,{X) = {~bi(x), ~j(y), ~bk(Z) } a r e  known. In other  words ,  
the eigenfunctions {~}i,j,k a r e  st ipulated according  to a s i m i l a r  (homogeneous l inear)  ope ra to r  [8]. 

The e igennumbers  {~i, ~j, ~z} = {~}i,j,k cor responding  to the eigenfunctions {@}i,j,k may  l ikewise 
be  s t ipulated on the assumpt ion  that the body is  homogeneous and cons i s t s  of the m a t e r i a l  of the sub-  
domain D r i n  which the or igin is  s i tuated,  while the boundary ~2 is  impene t rab le  to t h e r m a l  flux. 

The la t t e r  proposi t ion  will be cons idered  somewhat  l a te r .  

Thus the t e m p e r a t u r e  field may  be  r e p r e s e n t e d  in the f o r m  of the s e r i e s  

7" (X) = ~,] aijh~ i (tai, x) ~.~ (Ixj, Y)~k (~th, z), (2) 
iik 

where  ~ is the approx imate  value of the eigenfunction for  the or ig inal  p rob l em ({~}i,j,k a r e  inexact ly 
st ipulated).  

The t e m p e r a t u r e  gradient  VT undergoes  violation of continuity when the t ransi t ion is  made through 
the in te r faces  between the domains D i. In the s ta t ionary  s ta te  i ts  jumps will be  de te rmined  by the ra t io  
between the coeff icients  of t h e r m a l  conductivity.  Le t  us  wr i te  the gradient  of T(X) a f t e r  st ipulating a 
s tepwise  change of i ts  project ions:  

t In engineer ing p rac t i ce  ca se s  in which the physical  coeff ic ients  va ry  s tepwise a r e  mos t  f requently en-  
countered.  
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where the notation 

f V " VT"IX} / Z(Or) [,did a;ik*t'~ *~}h ] ; 

[ Z  ] 
"':~ {Z '" ]} 

(D~) aii~,alh ' i  *h,~ , 
i ik  

(3) 

has been  used.  

%, o~,~ ~ j , ~ _  o k j  o~,, (4) 
- Ox ' -@v ' ~ ' ' '  - Oz 

The s tepwise  var ia t ions  of the gradients  cor responding ly  define a s tepwise var ia t ion of the magnitude 
of the entropy product ion for  the t rans i t ion  f r o m  domain to domain: 

�9 d~ = max. (5) 

= - -  + T  d ' T'.k]dV 

I ' =  U D  i 
i = |  

On 
n cn 

v= U P  i n= U Ddri  
i = l  l = I  

Holding to the t e rminology  introduced by Tikhonov [9], we shall  cal l  the var ia t ional  p rob lem of the 
sea rch  for  an e x t r e m u m  of a continuous convex functional to be c o r r e c t l y  s ta ted in a genera l ized  manner  
if  the following conditions a r e  sat isf ied:  

1) the se t  of solutions caus ing  the or iginal  function to have a min imum or  max imum is  not empty;  

2) the a r b i t r a r y  minimizing sequence converges  in the norm to the exact  solution in the c o r r e s p o n d -  
ing m e t r i c .  

The f i r s t  condition is fulfil led on the ba s i s  of the phys ica l  e s sence  of the stated p rob lem.  F o r  the 
t ime being nothing may  be said concerning the second condition. 

In [3, 9-11] it has  been shown that in var ia t iona l  p rob l ems  involving the e x t r e m u m  of a continuous 
convex functional (optimal control  p rob lems)  the minimiz ing  sequences  in genera l  do not converge  s t rongly 
or  even weakly to an exac t  solution. Tikhonov [9] p roposed  a regu la r iza t ion  method ensur ing uni form con-  
vergence  of the minimiz ing  sequence in the p r e s e n c e  of a fa i r ly  smooth solution of the or iginal  p rob lem in 
o rde r  to solve i nco r r ec t l y  s ta ted var ia t iona l  p r o b l e m s .  La t e r  Budak et  al.  [10] proposed  regular iza t ion  
methods with the formula t ion  of min imiz ing  sequences  having convergence  in the no rm on continuity i n t e r -  
vals  (i. e. ,  for  the case  of p iecewise-cont inuous  e x t r e m a l s  of the functional).  

Under these conditions the a lgor i thm for  formula t ing  the min imiz ing  sequences  mentioned,  which a r e  
based  on condi t ional -gradient  methods ,  the g rad ien t -p ro jec t ion  method,  etc.  [10], a r e  compl ica ted  to 
rea l i ze  and as yet  a r e  not extens ively  used in applied engineer ing p r o b l e m s .  

As Levi t in  and Polyak showed [10, 11], in the case  of a var ia t ional  p rob lem with a s imple  cons t ra in t  
of the Linear r igorous  or  nonr igorous  inequality type, an effect ive device for  achieving a solution r e m a i n s  
the R i t z - R a y l e i g h  method.  

We shall  d i scuss  a cons t ra in t  for  the p r o b l e m  we have s ta ted a lit t le fu r the r  on. 

Returning to the functional (4), (1) we note that  i ts  p r o p e r t i e s  involving continuity, convexity,  and 
boundedness  f rom below have recent ly  been proved  in [12]. This  fact  s impl i f ies  the subsequent  cons ide ra -  
tion of the p rob l em  somewhat ,  s ince,  having in mind [3] and [10], there  is  no need for  us to prove  s t rong 
convergence  of the min imiz ing  sequence for  an exact  solution for  the cor responding  regu la r i zed  functionals.  
The functional (5), for  which the ent ropy flux through the su r face  is equal to ze ro  ( i .e . ,  for  the case  of an 
i so la ted  body), has  analogous p r o p e r t i e s .  
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Let  us dwell in somewhat g rea te r  detail on this feature.  

The fact that in the s ta tement  of the problem the boundary conditions are  unknown necessar i ly  leads 
to the idea of placing the external entropy flux equal to zero  and introducing a different uniqueness r equ i re -  
ment instead of the boundary conditions, namely 

(X0) = T o ,  (6) 

where T o is the measured  tempera ture .  

Condition (6) simultaneously plays the role of a boundary requi rement  during the minimization of the 
functional. 

Thus, we have the following variational problem: 

J (T) = f K (Dr) ~2 (Di) [,~2~,~ _:_ ,-~2 , ~2 ] 
�9 2 U (D~) , ~i, i  ~ k,td 
t~ 

v= U P  i 
i = l  

(x) ~ ] dV = q- w min, 

"F (Xo) = T o. 

(7) 

(8) 

The functional (7! is the express ion for the Onsager principle of minimum dissipative energy for the 
case of an inhomogeneous body, or,  in the al ternative and preferable  formulation of Prigogine,  the pr in-  
ciple of least  entropy production for the stat ionary state. 

Let  us now undertake the "solution" of the systein (7), (8). 

Let  us identify the space of functions on which we shall seek the ex t remal  of the functional with Hil- 
ber t  space* which shall be rea l ized fur ther  on as L 2. 

Let  us write the regular ized functional (1) in the form 

J%~ (T) = J (T) -v- am Y K : ,  

0 < a  r e < A ,  a m--*0. (9) 

Here and fur ther  on we shall hold to the notation used in [10]. 

Let  us consider  the sequence of regular ized  approximating functionais 

J~m~m = J (T) -r-' am I"T L~e -i- 0 , .  (T),. (10) 

where I| < em; e m is the approximation e r r o r  which is uniform on the entire c[osed convex se t  of 
solutions w, T E T. Under these conditions e m ~ 0, m --* ~ .  

Having (2) in mind, the functional (10) may be written thus: 

J ~ m  = J (V) + ~ IFTIJ~.. �9 (11) 

The functionals (9)-(11) are  bounded f rom below, continuous, and strongly convex, which is a neces-  
s a ry  condition for  formulat ing a strongly convergent  minimizing sequence [3]. 

The determinat ion of the sequence a m is the key feature f rom the point of view of the pract ica l  solu- 
tion of the variat ional  problem. Therefore  let us dwell in g rea te r  detail on the procedures  for choosing 

The choice of the sequence a m is determined by the three following fac tors :  

1) the incor rec tness  of the variat ional  problem (absence of s t rong convergence of the minimizing 
sequence); 

2) instability of the solution because of e r r o r s  in stipulating the measured  tempera ture  To; 

O/m~ 

* In general ,  if we have in mind weak convergence to the exact  solution it follows that the functional space 
is not Hilbertian but is close to the concept of an energy space (but not in the sense of an active state, 
af ter  Fr iedr ichs ,  but ra ther  in the sense of a dissipative state, i . e . ,  a space of sca t tered  energy gene- 
ra ted  by a conservat ive dissipative opera tor  [13]). 

778 



3) inaccuracy  in st ipulating the e igennumbers  in the expansion (2). 

In the pape r  by Tikhonov [9] i t ems  1 and 2 l i s ted  above cannot be separa ted ,  and it  is said that if  the 
sequence a m exis t s  it follows that be s ides  un i form convergence of the approx imate  solutions to the exact  
sotution for  the var ia t iona l  p rob l em,  s tabi l i ty  of the solution re la t ive  to var ia t ion  of the e r r o r s  in the 
or ig inal  conditions is  l ikewise a s s u r ed .  

Le t  us now introduce what is  evidently an assumpt ion  which is  not very  burdensome:  we identify 
i t em 3 with i t em 1. This  al lows methods  which have a l r eady  been developed to be used in formulat ing the 
minimiz ing  sequence a m.  So f a r  the s imples t  method is  that of Morozov [3]. 

All n e c e s s a r y  proofs  concerning the p r o p e r t i e s  of the pr inc ipa l  solutions of the regu la r i zed  p rob lem 
have been given in [3]. T h e r e f o r e  it is r equ i red  m e r e l y  to r e l a t e  the p rocedu re s  for  choosing a m to the 
R i t z - R a y l e i g h  method of formula t ing  a minimiz ing  sequence.  

In the expansion (2) we l imit  the ana lys i s  to s t e r m s  and a s s u m e  ~:s = ~0(~ = 0) to be a " t r ia l"  solu-  
tion. Le t  us choose ce r ta in  posi t ive  numbers  a > 0. We calculate  the values  of the funetionals {with a l -  
lowance for  the cons t ra in t  (8)) j(~?0) and Ja(T~ We de te rmine  the di f ference 

l!J~ (7 ~ -- J (T~ ~ = 5. (12) 

Let us designate the lower bound ~_ > 5. We now Lake a certain amax > ~_ but one which is such that Tamax 

~ ~0 Finally, we choose the numerical value of T, 0 < T < 1 and formulate the sequence 

%,, == "d~(arnax--a__), m = 0, I, 2, . . (13) 

We shal l  add t e r m s  to the expansion (2), thus inc reas ing  the number  of t e r m s  of the s e r i e s  and s imul -  
taneously mult iplying out lIT ll~2 by the cor responding  value of a m.  F r o m  the sequence of s y s t e m s  obtained 

I ~ - -  , 2  

J ~mc% = J ( ' f )  ~- a,n rlTIIL~ , (14) 

(Xo) = ro (15) 

we determine the coefficients aij k. As the criterion for estimating the closeness of the approximate solution 
Tam to the true solution we use the norm 

riT~m - T%~ ~ I}~, < a, (16) 
where A is the stipulated error .  

In order to designate the "trial" solution ~0 it is evidently necessary to take at least 4 to 5 eigen- 
numbers and eigenfunctions for each coordinate. 

An experimental check of the method which has been developed above on mathematical models consti- 
tutes a subject  for  subsequent  invest igat ion.  
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