ON A CERTAIN CLASS OF INCORRECTLY STATED
PROBLEMS IN ANALYTICAL THEORY OF
THERMAL CONDUCTIVITY AND IN THE THEORY
OF INDIRECT MEASUREMENTS

0. V. Minia UDC 536.24.02

The variational problem of stationary thermal conductivity in an inhomogeneous solid is
formulated. It is assumed that the boundary conditions on the boundary of the body are un-
known. In order to obtain a unique and stable solution one requires measurement of the
temperature at one point and correct selection of the regularization parameter.

As is well known, an indirect measurement is defined as a measurement in which the value of the
desired quantity is determined by calculation on the basis of direct measurements of other quantities which
are associated with the measured quantity by a known dependence. Under these condifions the procedure
for calculating the desired quantity may be fairly complicated.

. If the relationship between the desired and measured quantities is known with an accuracy of up to a
certain functional equation reflecting, for example, the condition of conservation of energy, momentum
or mass, the superposition principle or other physical laws, then the notion of indirect measurement ac-
quires a meaning that is different from one usually accepted in metrology.

In engineering the necessity frequently arises of measuring a cerfain physical parameter where one
cannot, for example, place a meter in view of structural, technological, or operational peculiarities (i.e.,
factors based on an especially practical property).

Let it be required to measure the temperature on the surface of a body or to determine the heat flux
through its boundary for heating by an external source. For various reasons the possibility of placing the
sensing elements of a transducer on the surface of the body or of performing measurements by the contact-
less method is excluded.

If the temperature depends on one coordinate, then for the simplest body (half-space, plate, cylin-
der, sphere) the problem indicated is solved as an inverse problem or as a problem in reconstruction
{(analytical continuation), depending on the number of points inside the body at which measurement is per-
formed [1, 2, 3]. In other words, finding the temperature at some point of the body from a measurement
at a different point of the body is essentially an indirect measurement, but not in the sense of the definition
generally accepted in metrology.

As will be evident from the subsequent expanded statement of the problem, in terms of the mathe-
matical procedure this type of measurement is close to the operational treatment of indirect measurement
in quantum mechanics.

However, the mathematical operation of reconstructing values of a function or the function itself
from oune or several measurements may be incorrect, since one of the three conditions for a correctly
stated problem is not always fulfilled, notwithstanding the existence of physical uniqueness of the situation.

Regularization methods proposed by Tikhonov, Morozov, Turchin, and associates [4], and by a
series of many mathematicians eliminate the incorrectness of the original problem in various ways.
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Let us go over to formulation of the following important practical problem.

In a continuous body but one which is inhomogeneous in its thermophysical propertiésT it is required
to determine the temperature at some points X* = (x*, y*, z*) where direct measurement is impossible,
but the temperature at one or several other points Xy, X;, ..., may be monitored.

Let us consider the case of stationary thermal conductivity.

n
Let a body consist of a union of domains Dy, Dy,...,Dy:D = U Dj which are homogeneous in their
i=1
properties and have different thermophysical properties. Domains containing liquids or gas or evacuated
cavities may likewise serve as Dj. Under these conditions it is assumed that there is no convective motion
.in a gas or liquid.

Inside the domains D; the presence of energy sources or sinks is not excluded by definition.

Heat exchange with the ambient medium may go on according to various laws on the outside surface
of the body. However, these laws are assumed to be unknown. In this case it is required to determine
the temperature at the point X*, as well as the boundary conditions, from one measurement at the point
X, (or at several points). The point X; may lie on the boundary of the body; the function of a point may
be performed by a certain surface or volume whose temperature is monitored.

In the body considered, which fills a three-dimensional domain D having a boundary @, we introduce
a Cartesian coordinate system with rectangular, spherical, or cylindrical symmetry; this will be deter-
mined by the delineation or properties of the boundary © that closes the union of domains Dy, Dy, ..., Dy.

Let us write the Onsager—Glansdorff—Prigogine maximum principle [5, 6, 7] for the production of
entropy in the stationary state of a body on the agssumption that the boundary conditions are fixed in space
and time. Based on the additiveness property of entropy, entropy production, and entropy flux as quan-
tities of an extensive character, the maximum principle for the problem stated will have the form
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where T(X) is the temperature at an arbitrary point of the body; w(X) is the power of internal heat sources
or sinks.

The second term in the functional (1) is the steady-state entropy flux through the boundary Q.

Since the operator which stipulates the distribution of the temperature field in a homogeneous body
having the boundary Q is known, its eigenfunctions ¥(X) = {g;(x), ¥ {y), zpk(z)} are known. In other words,
the eigenfunctions {}; j i are stipulated according to a similar (homogeneous linear) operator [8].

The eigennumbers {p;, His TR {H}i,',k corresponding to the eigenfuncti'ons {‘/’}i,j J may likewise
be stipulated on the assumption that the bocfy is homogeneous and consists of the material of the sub-
domain Dy in which the origin is situated, while the boundary Q is impenetrable to thermal flux,

The latter proposition will be considered somewhat later,

Thus the temperature field may be represented in the form of the series
%(X) = E aijn‘Ei (s, %) ;Pj (wj 9 b (b ?), (2
ijk
where § is the approximate value of the eigenfunction for the original problem ({“}i,j k are inexactly
stipulated). )

The temperature gradient VT undergoes violation of continuity when the transition is made through
the interfaces between the domains D;. In the stationary state its jumps will be determined by the ratio
between the coefficients of thermal conductivity. Let us write the gradient of T(X) after stipulating a
stepwise change of its projections:

+In engineering practice cases in which the physical coefficients vary stepwise are most frequently en-
countered.
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has been used.

The stepwise variations of the gradients correspondingly define a stepwise variation of the magnitude
of the entropy production for the transition from domain to domain:
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Holding to the terminology introduced by Tikhonov {9], we shall call the variational problem of the
search for an extremum of a continuous convex functional to be correctly stated in a generalized manner
if the following conditions are satisfied:

1) the set of solutions causing the original function to have a minimum or maximum is not empty;

2) the arbitrary minimizing sequence converges in the norm to the exact solution in the correspond-
ing metric.

The first condition is fulfilled on the basis of the physical essence of the stated problem. For the
time being nothing may be said concerning the second condition.

In [3, 9-11] it has been shown that in variational problems involving the extremum of a continuous
convex functional (optimal control problems) the minimizing sequences in general do not converge strongly
or even weakly to an exact solution. Tikhonov [9] proposed a regularization method ensuring uniform con-
vergence of the minimizing sequence in the presence of a fairly smooth solution of the original problem in
order to solve incorrectly stated variational problems., Later Budak et al. [10] proposed regularization
methods with the formulation of minimizing sequences having convergence in the norm on continuity inter-
vals (i.e., for the case of piecewise-continuous extremals of the functional).

Under these conditions the algorithm for formulating the minimizing sequences mentioned, which are
based on conditional-gradient methods, the gradient-projection method, etc, [10], are complicated to
realize and as yet are not extensively used in applied engineering problems.

As Levitin and Polyak showed [10, 11], in the case of a variational problem with a simple constraint

of the linear rigorous or nonrlgorous inequality type, an effective device for achieving a solution remains
the Ritz—Rayleigh method.

We shall discuss a constraint for the problem we have stated a little further on.

Returning to the functional (4), (1) we note that its properties involving continuity, convexity, and
boundedness from below have recently been proved in [12]. This fact simplifies the subsequent considera-
tion of the problem somewhat, since, having in mind [3] and [10], there is no need for us to prove strong
convergence of the minimizing sequence for an exact solution for the corresponding regularized functionals.
The functional (5), for which the entropy flux through the surface is equal to zero (i.e., for the case of an
isolated body), has analogous properties.
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Let us dwell in somewhat greater detail on this feature.

The fact that in the statement of the problem the boundary conditions are unknown nebessarily leads
to the idea of placing the external entropy flux equal to zero and introducing a different uniqueness require-
ment instead of the boundary conditions, namely

T X =Te (6)
where Tg is the measured temperature.

Condition (6) simultaneously plays the role of a boundary requirement during the minimization of the
functional, s . . -

Thus, we have the following variational problem:
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The functional (7) is the expression for the Onsager principle of minimum dissipative energy for the
case of an inhomogeneous body, or, in the alternative and preferable formulation of Prigogine, the prin-
ciple of least entropy production for the stationary state,

Let us now undertake the "solution" of the systém (7), (8).

Let us identify the space of functions on which we shall seek the extremal of the functional with Hil-
bert space* which shall be realized further on as L.

Let us write the regularized functional (1) in the form
oy T) = J(T) + 00 (T ,
0<a, <4 a,—>0. (9

n — oo.

Here and further on we shall hold to the notation used in [10].
Let us consider the sequence of regularized approximating functionals

Jo o =4 (T) 40y [T+ 0, (), (10)

Smd
where |8y, (T)| < &3 &y, is the approximation error which is uniform on the entire closed convex set of
solutions 7, T € 7. Under these conditions &gy — 0, m — .

‘Having (2) in miad, the functional (10) may he written thus:

Joman = 4 (1) -+ 2 T, -oay

The functionals (9)-(11) are bounded from below, continuous, and strongly convex, which is a neces-
sary condition for formulating a strongly convergent minimizing sequence [3].

The determination of the sequence @,y is the key feature from the point of view of the practical solu~
tion of the variatioral problem. Therefore let us dwell in greater detail on the procedures for choosing
Cm-

The choice of the sequence oy, is determined by the three following factors:

1) the incorrectness of the variational problem (absence of strong convergence of the minimizing
sequence);

2) instability of the solution because of errors in stipulating the measured temperature T;
*In general, if we have in mind weak convergence to the exact solution it follows that the functional space
is not Hilbertian but is close to the concept of an energy space (but not in the sense of an active state,

after Friedrichs, but rather in the sense of a dissipative state, i.e., a space of scattered energy gene-
rated by a conservative dissipative operator [13]). ‘
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3) inaccuracy in stipulating the eigennumbers in the expansion (2).

In the paper by Tikhonov [9] items 1 and 2 listed above cannot be separated, and it is said that if the
sequence oy, exists it follows that besides uniform convergence of the approximate solutions to the exact
solution for the variational problem, stability of the solution relative to variation of the errors in the
original conditions is likewise assured.

Let us now introduce what is evidently an assumption which is not very burdensome: we identify
item 3 with item 1, This allows methods which have already been developed to be used in formulating the
minimizing sequence a4,. So far the simplest method is that of Morozov [3].

All necessary proofs concerning the properties of the principal solutions of the regularized problem
have been given in [3]. Therefore it is required merely to relate the procedures for choosing oy, to the
Ritz~Rayleigh method of formulating a minimizing sequence.

In the expansion (2) we limit the analysis to s terms and assume "i‘s = E‘o(a = 0) to be a "trial" solu-
tion., Let us choose certain positive numbers ¢ > 0, We calculate the values of the functionals (with al-
lowance for the constraint (8)) J(T% and Ja(To). We determine the difference

Wy (T —J (@), = o. (12)

Let us designate the lower bound @ > 6. We now take a certain a,,x > o but one which is such that %amax
~ 70, Finally, we choose the numerical value of 7, 0 < 7 <1 and formulate the sequence

&y = T (X —a), m=0,1, 2, ... (13)

We shall add terms tg the expansion (2), thus increasing the number of terms of the series and simul-
taneously multiplying out I'T |l iz by the corresponding value of @y,. From the sequence of systems obtained

= J(T) + o, |71, (14)
T(X) =T, (15)

Emam

we determine the coefficients ajjk- As the criterionfor estimating the closeness of the approximate solution
Tam to the frue solution we use the norm

Top—Ta 1, <A, (16)
m-1 2
where A is the stipulated error.

In order to designate the "trial” solution TO it is evidently necessary to take at least 4 to 5 eigen-
numbers and eigenfunctions for each coordinate. '

An experimental check of the method which has been developed above on mathematical models consti~
tutes a subject for subsequent investigation.
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